Inversions of Semistandard Young Tableaux

نویسنده

  • Paul Drube
چکیده

A tableau inversion is a pair of entries from the same column of a row-standard tableau that lack the relative ordering necessary to make the tableau columnstandard. An i-inverted Young tableau is a row-standard tableau with precisely i inversion pairs, and may be interpreted as a generalization of (column-standard) Young tableaux. Inverted Young tableaux that lack repeated entries were introduced by Fresse to calculate the Betti numbers of Springer fibers in Type A, and were later developed as combinatorial objects in their own right by Beagley and Drube. This paper generalizes earlier notions of tableau inversions to row-standard tableaux with repeated entries, yielding an interesting new generalization of semistandard (as opposed to merely standard) Young tableaux. We develop a closed formula for the maximum numbers of inversion pairs for a row-standard tableau with a specific shape and content, and show that the number of i-inverted tableaux of a given shape is invariant under permutation of content. We then enumerate i-inverted Young tableaux for a variety of shapes and contents, and generalize an earlier result that places 1-inverted Young tableaux of a general shape in bijection with 0-inverted Young tableaux of a variety of related shapes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers

An inverted semistandard Young tableau is a row-standard tableau along with a collection of inversion pairs that quantify how far the tableau is from being column semistandard. Such a tableau with precisely k inversion pairs is said to be a k-inverted semistandard Young tableau. Building upon earlier work by Fresse and the author, this paper develops generating functions for the numbers of kinv...

متن کامل

A 'Nice' Bijection for a Content Formula for Skew Semistandard Young Tableaux

Based on Schützenberger’s evacuation and a modification of jeu de taquin, we give a bijective proof of an identity connecting the generating function of reverse semistandard Young tableaux with bounded entries with the generating function of all semistandard Young tableaux. This solves Exercise 7.102 b of Richard Stanley’s book ‘Enumerative Combinatorics 2’.

متن کامل

Young tableaux and the Steenrod algebra

The purpose of this paper is to forge a direct link between the hit problem for the action of the Steenrod algebra A on the polynomial algebra P(n) = F2[x1, . . . , xn], over the field F2 of two elements, and semistandard Young tableaux as they apply to the modular representation theory of the general linear group GL(n,F2). The cohits Qd(n) = Pd(n)/Pd(n)∩A+(P(n)) form a modular representation o...

متن کامل

A Combinatorial Setting for Involutions and Semistandard Young Tableaux

We establish a combinatorial connection between the sequence (yn,k) counting the involutions on n letters with k descents and the sequence (an,k) enumerating the semistandard Young tableaux on n cells with k symbols. This allows us to exhibit an explicit formula for the integers yn,k and find combinatorial properties of the two sequences. In particular, we show that the sequences (yn,k) are not...

متن کامل

The shifted plactic monoid ( extended abstract )

The (shifted) plactic monoid. The celebrated Robinson-Schensted-Knuth correspondence (14) is a bijection between words in a linearly ordered alphabet X = {1 < 2 < 3 < · · · } and pairs of Young tableaux with entries in X . More precisely, each word corresponds to a pair consisting of a semistandard insertion tableau and a standard recording tableau. The words producing a given insertion tableau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016